Regenerative grazing that builds soil health and improves water infiltration and storage holds great promise for livestock producers coping with unpredictable climatic conditions, but it has been slow to catch on in the southern United States.
In four states, though, this practice is gaining traction. The National Center for Appropriate Technology (NCAT) recently concluded a three-year project through its Soil for Water program, funded by Southern SARE, whose goal was to identify practical and regionally appropriate methods of regenerative grazing and accelerate the adoption of those methods in Arkansas, Mississippi, Texas, and Virginia.
Focusing on the needs of small, underserved, and limited-resource farmers, the project team created working groups in each state to learn how families in these states are implementing regenerative grazing and how they are supporting each other through peer-to-peer learning and mentorship.
Together, these case studies provide a snapshot of the real-world experience of producers, the obstacles they face, the successes they’ve enjoyed, and how the ideas and methods of regenerative grazing are spreading in the south.
Read more in our new publication series, Regenerative Grazing in the South.
Regenerative Grazing in the South: Case Studies from Virginia
Five Virginia livestock producers work to regenerate their land and strengthen their communities in the face of uncertain weather, predatory land acquisition, and lack of support for local markets.
For more inspiration, check out the new video series that tells the stories of 11 producers in Virginia, who share their experiences and insights about regenerative grazing.
This project was based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2020-38640-31521 through the Southern Sustainable Agriculture Research and Education program under subaward number LS21-345. USDA is an equal opportunity employer and service provider. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
https://soilforwater.org/wp-content/uploads/2024/11/Guille-Yearwood.jpg7771166ATTRA - Sustainable Agriculture/wp-content/uploads/2021/10/soil-for-water-logo-101921.pngATTRA - Sustainable Agriculture2024-11-18 09:55:572024-11-18 16:03:26New Publications Showcase Success Stories of Regenerative Grazing in the South
In this video, Eric Benfeldt, an Extension Specialist with Virginia Cooperative Extension, introduces the Soil for Water Video Case Studies series.
The purpose of this systems research project led by National Center for Appropriate Technology (NCAT) was to identify and promote practical ways of using regenerative grazing practices to improve soil health and catch and hold more rainwater in soil. Virginia Tech and Virginia Cooperative Extension’s project team conducted 11 semi-structured interviews and conversations across Virginia to learn and better understand farmers’ and ranchers’ agroecological motivations and overall values related to the protection and conservation of water resources. The project aimed to highlight distinct and diverse farms of Virginia’s agricultural community through a narrative inquiry framework.
The project team included Eric Bendfeldt, Kim Niewolny, and Katie Trozzo from Virginia Tech and Virginia Cooperative Extension; Lee Rinehart and Mike Morris of NCAT; and Ernie Didot of Clear Impact Productions.
The project team especially wants to thank the participating farmers for sharing their time, experiences, and insights about regenerative grazing and soil health-building systems with us and the broader community.
This project material is based upon work that is funded and supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2020-38640-31521 through the Southern Sustainable Agriculture Research and Education (SSARE) program under subaward number LS21-345. USDA is an equal opportunity employer and service provider. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.
Virginia Cooperative Extension is a partnership of Virginia Tech, Virginia State University, the U.S. Department of Agriculture, and local governments. Its programs and employment are open to all, regardless of age, color, disability, sex (including pregnancy), gender, gender identity, gender expression, genetic information, ethnicity or national origin, political affiliation, race, religion, sexual orientation, or military status, or any other basis protected by law.
Bean Hollow Grassfed Farm Rappahannock County, Virginia
Bean Hollow Grassfed Farm is a multi-generational farm located in the shadow of the Blue Ridge Mountains in Rappahannock County. A core belief for Michael Sands and Bean Hollow Grassfed Farm is having and encouraging a healthy ecosystem where farm and land management reinforce natural processes because a farm cannot be healthy if the land is sick. Sheep and cattle are their primary livestock, but they also have layers for eggs. Most of their meat sales are sold through their on-farm store. In this video, Michael shares about his early career as a researcher and educator with the Rodale Institute; describes how the gnawing in his gut led him into farming and the move toward more regenerative practices that strengthen biodiversity, build soil health, and sequester carbon; and explains his family’s efforts to mitigate climate change. Farming for Mike is about continuous improvement, assessment of finances and hard-to-measure ecological metrics, and making management decisions that push forward the adoption of regenerative practices, while being mindful of farm transition and conservation planning.
Bramble Hollow Farm Bedford County, Virginia
Bramble Hollow Farm is owned and operated by Brent and Anna Wills and is located along the eastern foothills of the Blue Ridge Mountains in Bedford County. Brent and Anna and their family raise pork and chicken on pasture. They have also raised other livestock and poultry through the years. Brett and Anna use multiple market channels, including farmers markets, on-farm sales, community supported agriculture (CSA) deliveries, participation in a food hub, and affiliation with the Edible Goose Creek farm alliance. Additionally, Bramble Hollow Farm invested in an on-farm commercial kitchen to diversify and add value to what they grow and offer. In this video, Brent shares who (i.e., writings of Gene Logsdon, Wendell Berry, and others) and what influenced him and helped form his vision for regenerative agriculture where soil health equates to plant health, plant health equates to livestock health, and ultimately equates to human and planetary health.
Cattle Run Farm LLC Greene County, Virginia
Cattle Run Farm LLC is a third-generation, family-operated, and veteran-owned farm located in Greene County and the central Piedmont region of Virginia. Sarah Morton and Ralph Morton seek to carry on the tradition of their family and expand the concept of an agrarian lifestyle and business to the community. Sarah shares about her family’s roots in farming and how asset mapping played a critical role when her father wanted to transition to the next generation. Sarah and Ralph raise cattle, chickens, produce, blackberries, hogs, cows, and more as they continue to look to add value and diversify their operation. They are active members in the Minority and Veteran Farmers of the Piedmont and work closely with several other community-focused organizations. Sarah emphasizes that Cattle Run Farm’s story is one of resilience, scale, diversification, and fortitude to keep farming and reaching towards sustainability and empowering others. Like many multi-generational family farms, sustainability, resilience, and viability are forged out of necessity. Sarah reiterates the critical importance of community in farm viability and similarly how farm viability strengthens community viability beyond the farm’s gate. Overall, the story gives a glimpse into Sarah’s and Ralph’s ecological and social consciences and how reconnecting to the land instills passion and power.
Ellett Valley Beef Company Montgomery County, Virginia
Gil Yearwood of Ellett Valley Beef Company reflects on his time raising beef since 1975. Ellett Valley Beef Company is in Montgomery County in southwest Virginia and specializes in South Poll cattle because they are excellent for grass-based grazing systems and have relatively small frames, easy dispositions, and are tender. Gil admits he has tried every variation of rotational grazing and has found that it is significantly better than continuous grazing. Gil took an interest in cattle and grazing as a teenager. He has been a mentor for many young and second-career cattle farmers. Gil demonstrates that regenerative agriculture and grazing is a journey and an adaptive lifelong process. He openly shares his overarching goals, challenges, the lessons he has learned, and what gives him hope with soil health, water quality, and regenerative grazing adoption as he interacts with other farmers and visitors to his farm.
Ember Cattle Company Rockbridge County, Virginia
Becky Szarzynski is the owner and operator of Ember Cattle Company in Fairfield in Rockbridge County, Virginia. Becky as a grazier has honed her grazing management skills over the past 15 years by working with her father, attending conferences, being mentored by other farmers, and serving in a coordinator role of the farmer-to-farmer mentoring network with the Virginia Forage and Grassland Council. Becky raises South Poll cattle as a cow-calf operation, breeds replacement heifers, and sells seed stock on 160 acres of land. Becky practices rotational grazing with a diverse forage base that includes native warm-season grasses, summer annuals, and cool-season perennials. She prefers the term adaptive grazing over rotational grazing because conditions are constantly changing, and you must be very observant of the interactions between soil health, plant diversity, livestock, pollinators, the weather, stocking density, and the overall system. Becky shares her motivations, lessons learned, aspirations, ongoing research and study of grazing, and, of course, her fascination with dung beetles.
Glade Road Growing Montgomery County, Virginia
Glade Road Growing is a small family farm within the town limits of Blacksburg in Montgomery County, Virginia. Sally Walker and Jason (JP) Pall started the farm operation in 2010, building on their experience with home gardening. Sally and JP did not grow up on farms but have learned through internships, conferences, reading, YouTube videos, farm visits, and their own experiences as the farm has grown over the past 14 years. Sally and JP and their growing full-time and part-time staff raise certified naturally grown produce and pasture-raised, organic-fed pork, poultry, and eggs. They have worked with the USDA-Natural Resource Conservation Services on several cost-shared soil and water conservation practices. Glade Road Growing started marketing their produce at the Blacksburg Farmers Market, but their sales now include a farm stand and a season-long farm share and community supported agriculture (CSA) subscriptions. Nutrition, health, and connections with community are critically important to Glade Road Growing’s mission and vision. Although JP and Sally are not quick to use the term regenerative for their vegetable production practices and livestock rotations, respect for their soil, water, animals, staff, and customers is always at the forefront of their thinking, and they are growing together with the community in mind.
Heaven’s Hollow Farm Madison County, Virginia
Heaven’s Hollow Farm is a fourth-generation family farm that has been in operation since 1951. Jacob Gilley, his wife Jennifer, and their children operate the farm in Orange, Virginia. Jacob, a first-generation farmer, is thankful for the support of his parents and credits his involvement showing cattle in 4-H as a teenager for his career in farming and conservation. He continues to learn and study through reading and visiting with other farmers. Heaven’s Hollow Farm is a commercial Black Angus cow-calf operation that also includes pastured poultry and pork. Most of their beef, poultry, pork, and eggs are marketed directly to consumers and local restaurants. Jacob and Jennifer take a holistic approach to managing their farm and seek to improve soil health, water quality, bird and wildlife habitat, and pollinator diversity as much as possible. Jacob describes their thinking about these processes and their rotations. Soil health, profitability, and quality of life must be balanced and should not be too complex. Being flexible and adaptable is important for Jacob and Jennifer, particularly with grazing, raising a family, and managing the farm holistically.
Holsinger Homeplace Farms Rockingham County, Virginia
Holsinger Homeplace Farms is a family farm in Rockingham County in the central Shenandoah Valley. Buck and Amanda (AJ) Holsinger and their children are the tenth and eleventh generations to live on the farm. Buck and AJ started farming with the goal of feeding their family the healthiest food possible. Their animals are raised humanely and given the freedom to roam and obtain a nutritious diet from the forage base and their silvopasture system that includes black locust, black walnut, pine, cedar, and other mast, fodder, and shade-producing trees. Holsinger Homeplace Farms now provides other families excellent grassfed beef and eggs from free-range laying hens. Buck and AJ share their motivations and how they have a generational perspective. Russell Smith’s book Tree Crops was an early influence and motivation for Buck, along with his experience visiting other countries as a veteran and pilot. AJ’s background in dietetics and nutrition has influenced her perspective on soil, plant, and animal health. Silvopasture management is a centerpiece of their farm as they seek a system that is multi-functional and provides multiple benefits across time. USDA and state conservation and cost-share programs have helped them financially in getting started and allowing them to set a pathway for transforming the farm and achieving their long-term holistic vision.
Shamoka Run Farm Augusta County, Virginia
Shamoka Run Farm is a modest family farm in northern August County, operated by Leo and Judy Tammi. Leo grew up in Delaware on a small, diversified farm with a few milk cows, hogs, sheep, and poultry. Leo and Judy moved to the Shenandoah Valley region in 1981. Leo learned very early to farm with nature and what the land is best suited to. Shamoka Run Farm is a sheep and lamb farm that includes about 240 acres of hay and pasture, along with 60 additional acres of rented land. Leo was a founder of the early Virginia Lamb Cooperative, is an active member of the Virginia Forage and Grassland Council, and has worked with the USDA Natural Resources Conservation Services and Headwaters Soil and Water Conservation District on a variety of best management practices like riparian buffers, bird and pollinator habitat, and native grass plantings. Leo shares several epiphanies and observations on rotational grazing, resiliency, aesthetics, marketing, and wildlife habitat, as well as the need to educate people about the complexity of farming and the services farming and good land productivity provides to the broader community. Leo reminds us that regenerative and soil health-building principles must be internalized, require inquisitiveness, energy, resilience, and continual observation.
Singing Spring Farm Craig County, Virginia
Adam Taylor and Elizabeth Spellman-Taylor co-operate Singing Spring Farm, which is in the Sinking Creek Valley in Craig County, Virginia. Adam’s and Elizabeth’s goal is to be a whole, complete-diet farm that offers heirloom fruits and vegetables; goat milk, kefir, and cheese; culinary and medicinal herbs; eggs; and pastured, lamb, goat, and poultry. Agroforestry and permaculture are important themes on their farm as they seek to protect the Singing Spring on their farm, create community, and live out paradise gardening. Adam’s experience interning on a farm in southwest Virginia and being a Peace Corps volunteer in Zambia profoundly impacted how he views farming, while Elizabeth has a deep conservation ethic in agricultural land protection and agrarian commons. For each of them, Joe Hollis’s essays and musings on Paradise Gardening were instrumental for their vision of a family lifestyle that was balanced with everyday practices.
Swisher Family Farm Rockbridge County, Virginia
Jerry Swisher is a cattleman, farm consultant, and retired Senior Extension Agent for dairy sciences. He continues to own and operate Swisher Family Farm, his family’s farm in Fairfield and Brownsburg in Rockbridge County, Virginia. Throughout his career with Virginia Tech and Virginia Cooperative Extension, Jerry served in many capacities to support Virginia’s dairy farmers, 4-H youth, and industry. Jerry designed and developed the Dairy Rotational Loafing Lot System, which became a standard best management practice for dairy farms to prevent soil erosion, protect natural resources, and enhance cow comfort and performance. Jerry was instrumental and a key resource for Virginia and Mid-Atlantic dairy farmers who desired to transition to grass-based dairy systems. He led multiple educational tours regionally and internationally so farmers could learn from other grass-based farmers in Ireland, New Zealand, and Australia. He provides an historical perspective and motivated farmers to transition to grazing systems rather than conventional confinement with limited access to pastures. Jerry documents farmers’ motivations for grazing in an era of high costs and frantic industrial change, the pushback from the dairy industry, and frequently asked questions about grass-based regenerative dairy farming.
https://soilforwater.org/wp-content/uploads/2024/09/Irrigation-16.png800800ATTRA - Sustainable Agriculture/wp-content/uploads/2021/10/soil-for-water-logo-101921.pngATTRA - Sustainable Agriculture2024-09-30 16:12:092024-11-25 09:44:44Soil for Water Video Case Studies
By Stephanie Kasper, University of Texas Rio GraSoil for Waternde Valley Program Manager
As a south Texas farmer, there’s not much I love more than a refreshing rainy day. However, my rain appreciation grew deeper this year after my partner John and I installed a 1,650-gallon rain harvest system at our house.
After moving into our home just outside Edinburg city limits in February 2022, we replaced most of our turf grass with a 336-square-foot vegetable garden in the front yard and an 840-square- foot one in the back, surrounded by vibrant native wildflowers.
The transformation from a lawn to food-producing gardens brought us both joy and water savings. Drought-adapted native plants require less water than traditional grass lawns, and we use drip irrigation for the vegetables, which is more efficient than overhead sprinklers. However, we wanted to reduce our reliance on the municipal water supply for outdoor plants even further, and help save the cleanest, highest-quality water for human consumption.
This desire felt ever more pressing as we settled into another hot, dry south Texas summer. Falcon Reservoir, which supplies water to the Rio Grande Valley, reached a historic low of 9% capacity in August 2022, leading to water use restrictions. Frustrated by complex water management issues and worried about our region’s long-term water supplies, I channeled that energy into action at home. I mapped my roof’s runoff potential and natural drip points, gathered supplies from Lowes, found six food-grade, 275-gallon IBC totes on Facebook Marketplace (with free delivery!), and studied YouTube videos on gutter installations.
The first rainfall after installing the gutters and tanks had me running from tank to tank, blissfully soaked, watching the water pour in. Even after nearly a year, I’m still out there for nearly every rainfall, happily watching the tanks fill and clearing any debris blocking the water flow.
A rain harvester rule of thumb is that 1 inch of rain on 1 square foot yields 0.6 gallons of potential water capture. With a roof area of 2,000 square feet and an average of 23 inches of rain in Edinburg per year, over 27,000 gallons of water flow off my roof annually. My 1,650-gallon tank storage can be filled entirely with just 1.5 inches of rain.
I arranged the tanks based on the flow rates of each roof section and with the destinations for water use in mind – two tanks in the front yard for the smaller front garden and four in the back for the larger backyard garden. The two front yard tanks are located at natural drip points, where 438 square feet of roof runoff can be channeled into them without additional gutter installations. These natural drip points are the easiest entry point for rain harvesting.
Once the rainwater is collected, the key is to use it efficiently. We use a 12V plug-in water pump to send water directly into the existing garden drip irrigation systems, eliminating the need for manual water hauling. The front yard drip irrigation uses 1.3 gallons per minute, so the 550 gallons of stored rainwater can provide about seven hours of irrigation time. The backyard system, with a water use rate of 2 gallons per minute and 1,100 gallons of water storage, provides nine hours of irrigation time.
In the past year, the stored water has helped reduce our municipal water use even further. The front yard garden required supplemental city water for only 50 out of 365 days (14%), and the back yard needed it for 153 out of 365 days (42%), with the gardens collectively producing 148 pounds of food in that time. Our city water usage came mostly during a 97-day dry stretch between late December and late March, when we received a total of only 0.5 inches of scattered rainfall. Since the backyard system was not complete until midway through last year, I expect our city water needs to decrease even further next year. The system is modular, and we can add additional tanks to increase water storage capacity based on our needs, providing flexibility for the future.
Installing a rain harvest system takes planning, funds, and maintenance, and I’m not going to suggest that it’s an easy sustainability swap that’s right for everyone. I’ve only saved a few dollars each month on my water bill at most. However, it has given me confidence in the resilience of our food-producing gardens amid heat waves and droughts and made me a more conscious water user.
Rainwater harvesting is already supported in Texas through exemptions from state sales tax on equipment and supplies. Some cities, like San Antonio and Austin, also offer educational programming and rainwater storage rebate programs to encourage rain harvesting. However, more efforts are required to promote rainwater harvesting on a larger scale, especially as Texas stares down the impacts of climate change and prepares for significant potential water shortfalls by 2040. Confronting these challenges in the Rio Grande Valley and beyond must include a reconsideration of our relationship with water, in small ways and large, to secure a sustainable future for all.
https://soilforwater.org/wp-content/uploads/2023/08/rainwater-harvesting.png551741NCAT IT/wp-content/uploads/2021/10/soil-for-water-logo-101921.pngNCAT IT2023-08-01 11:56:532023-08-01 11:57:15When in Drought, Plan It Out: Rain Harvesting
Almost every day, I am lucky enough to be able to take a quick walk to the creek that runs at the western edge of our property. I watch it change with the seasons. It becomes a tumultuous riot in the spring, sometimes it dries out completely in a droughty summer, in the fall the river birches drop their yellow leaves that float like tiny boats down the calm current, and in the winter ice forms on the banks and on the branches that dip into the water. This stretch of creek that feels like an old friend to me is affected by everything that happens upstream – how people manage their farms, yards, forests, and even their septic systems, as well as development – and it all can impact the clarity of the water, the health of the insects, birds, fish, amphibians and even people who spend time at the water.
This was on my mind when I was researching for an ATTRA podcast I recently recorded with my NCAT colleagues, Guy Ames and Lee Rinehart. We tackled the topic of phosphorus, an element essential for life and productive farming, but one that can have devastating negative impacts on lakes and streams if it washes off the land and into the water.
Over-application of phosphorus either in the form of a synthetic fertilizer or as manure is one of the main reasons for the huge dead zone in the Gulf of Mexico and for miles of beaches being closed every summer because of toxic algae blooms in lakes, rivers, and coastlines around the country.
I personally refuse to accept that this is “the price you pay” for food security. There are so many better ways to manage the essential macronutrient of phosphorus, and to manage waste from livestock operations so it is a resource, not a waste product, while still growing the food our communities need. We can have our clean waters and eat our cake too. (Is that how that expression goes? Something like that.)
Here are some ways to make sure you are being a good steward of your land and all the waterways downstream from you:
Regular soil testing: If your phosphorus levels are already high, don’t apply more!
Manage pH: If your soil pH is above or below the ideal range of 6-7, phosphorus becomes much less plant-available. Try to adjust your soil’s pH first before adding phosphorus.
Encourage mycorrhizal fungi: Mycorrhizal fungi partners with plant roots to help the plants access more phosphorus, in exchange for photosynthates. Try to reduce tillage to avoid damaging mycorrhizal fungi and have a diversity of plant species.
Choose the right cover crops: Some cover crops are good at scavenging and holding phosphorus in organic forms.
Follow the four R’s of fertilization: Right rate, right source, right placement, and right timing.
Keep your soil protected: Prevent phosphorus from leaving your fields in the form of soil erosion.
There are many other strategies for phosphorus management. Find our recent podcast here where we talked about the history of phosphorus fertilizer, the importance of getting it right, more tips and tricks for proper management, and much more. We all deserve to live and work on farms and ranches where you can take a dip in a cool creek after a long day’s work and not worry about fish kills and toxic algae. Proper soil and phosphorus management is essential in order to keep our waterways thriving. I’m sure everyone has their favorite spot like my creek – a swimming hole, a lake, a pond, a stream, a favorite beach vacation spot – some place you have special affection for, some place that can motivate you to find the best way to grow food or fiber, without causing harm. To find out more ways to do this, listen to our podcast, or reach out to me, Guy, Lee, or one of our many other ATTRA specialists. We are more than happy to hear about your favorite fishing hole and help you find ways to be a productive farmer with a good fertility management plan.
This blog is produced by the National Center for Appropriate Technology through the ATTRA Sustainable Agriculture program, under a cooperative agreement with USDA Rural Development. ATTRA.NCAT.ORG.
https://soilforwater.org/wp-content/uploads/2023/06/creek-e1687458808244.jpg242360NCAT IT/wp-content/uploads/2021/10/soil-for-water-logo-101921.pngNCAT IT2023-06-22 13:24:542023-06-22 13:33:55Managing Phosphorus for Clean Water
This video is a primer on how to use LandPKS, a phone app that lets you gauge the production and conservation potential of your land through easy monitoring, tracking, and data-analysis tools.
The presentation by Laura Hamrick, Program Coordinator for LandPKS, and Jeff Herrick, a soil scientist with the USDA Agricultural Research Service in Las Cruces, New Mexico, demonstrates how to use LandPKS to identify the soil, monitor soil health, monitor vegetation, track management, and track wildlife on an operation’s land.
This video is produced by the National Center for Appropriate Technology through the ATTRA Sustainable Agriculture program, under a cooperative agreement with USDA Rural Development. ATTRA.NCAT.ORG.
https://soilforwater.org/wp-content/uploads/2023/06/SHI-IMAGE-6-scaled-1.jpg17072560NCAT IT/wp-content/uploads/2021/10/soil-for-water-logo-101921.pngNCAT IT2023-06-22 12:34:492023-06-22 13:32:24LandPKS: Learning How to Monitor Our Land Over Time and Discover Its Potential
Could you ever live in a house that collapsed on itself? Probably not. To begin living there, we would have to rebuild the house by adding more space between the walls, ceiling, and floor. By the same token, soil life cannot live in soils that have collapsed where there is no place for them to live. They need enough space provided by good soil structure to live and grow. And because healthy soil structure is so important to creating resiliency to droughts and floods, as well as providing nutrients for growing our food, healthy soil structure is the house of life!
What is Soil Structure?
Soil structure is the arrangement of individual soil particles and the space between them. Soil microorganisms fed by sugars released by plant roots group soil particles together into larger units called aggregates. Soil structure can vary from granular where there is a lot of space between aggregates (think cottage cheese or a fluffy chocolate cake; see Photo 1) to being very tight and compact where there is very little to no space between soil particles and no aggregates are visible (see Photo 2).
Why is soil structure so important?
Photo 1: Healthy soil has a granular or crumbly structure. Photo: USDA-NRCS
Agriculture is the conversion of solar energy into harvestable, life-giving energy. Solar energy is captured by plants, which release that energy in the form of biochemical compounds to soil life. Soil life produces glue-like compounds that enable sand, silt, and clay particles to rearrange while also bringing nutrients to plant roots. As soil particles rearrange during the aggregation process, cavities called pores are created. Pores allow soil to infiltrate and hold water that’s essential for plants and soil life. Pores also allow air to get into the soil so soil life and roots can breathe while allowing carbon dioxide to be released from the soil. Carbon dioxide rising out of the soil is captured by plants so photosynthesis can continue. Life on earth is dependent on a healthy soil with a granular or crumbly structure that promotes the capture and release of water and
Photo 2: Unhealthy soil with no visible aggregates. Photo: USDA-NRCS
promotes the exchange of gases. In short, a granular soil structure allows soil life and plants to drink and breathe.
Think of soil structure like a house. The wood, concrete, and steel that make up the foundation, floor, walls, and ceiling are like sand, silt, and clay particles. The nails, screws, and staples are like the glue-like compounds secreted by plant roots and soil life. With nails, screws, and staples in place, the house has lots of room to live inside. But if a large earthmover moves through the house, the house collapses and the livable room inside the house is eliminated. Similarly, when tillage or another disturbance happens too frequently, the soil structure collapses on itself. Collapsed soil structure diminishes the habitat soil life needed to obtain nutrients for plants and to facilitate water infiltration and air movement.
What are the key practices that can improve soil structure?
Practices that can facilitate improved soil structure include the following:
Reduced tillage, strip tillage, or no-till
Three or more crops in rotation from three different plant families
Cover crop mixtures with at least eight plant species and three plant families
Grazing perennial pastures that focuses on: 1) adequate leaf area post-grazing; and 2) full plant recovery pre-grazing
Grazing cover crop mixtures on cropland where possible
Mulching
Controlled traffic farming
Converting annual cropland to perennial mixtures
Photo 3: Nine species cover crop mixture. Photo: USDA-NRCS
Healthy soil structure is the house of life. As we focus on improving the life in our soils, that same soil life can begin creating healthy soil structure with plenty of space within and between soil aggregates. This can give us healthy food plus resilience to droughts and floods. That sounds like a win-win-win!
This publication is produced by the National Center for Appropriate Technology through the ATTRA Sustainable Agriculture program, under a cooperative agreement with USDA Rural Development. ATTRA.NCAT.ORG.
https://soilforwater.org/wp-content/uploads/2023/06/JM-Healthy-Soil.png312393Luz Ballesteros Gonzalez/wp-content/uploads/2021/10/soil-for-water-logo-101921.pngLuz Ballesteros Gonzalez2023-06-08 13:47:382023-06-08 13:47:38Healthy Soil Structure – The House of Life
With roots in regenerative land stewardship since 1994, The Dixon Water Foundation has been approaching one of Texas’s limited resources in a unique way. While many other groups promote better livestock management and land stewardship, Dixon is one of the few organizationsnationally in its specific focus on using grazing to protect and improve water resources.
Dixon’s mission of promoting healthy watersheds through sustainable land management is accomplished through integrating livestock, research, and education. The foundation manages four large ranches in west and north Texas totaling more than 15,000 acres “On Dixon Ranches, livestock are the tool we use to create healthier land and healthier watersheds,” says their website.
When asked why Dixon takes such a specific approach to water conservation, Robert Potts, President and CEO, said, “Because it is what we know, and it is what we are good at.” Dixon is a leading organization in regenerative land stewardship, and they’ve been doing it for nearly 30 years, long before “regenerative” became a buzz word.
Photo: The Dixon Water Foundation
Dixon was one of the Soil for Water Project’s first funders. Their mission is similar to ours, and we owe them a great deal of gratitude. We’re fortunate to have Philip Boyd, Vice President of Science & Research, and Casey Wade, Vice President of Ranching Operations, working alongside us as we provide education and set up small-scale “safe-to-fail” trials across Texas. Dixon works with researchers at universities and nonprofit organizations like Sul Ross State University’s Borderland Research Institute and Rocky Mountain Bird Observatory to monitor their ranch management methods. These monitoring efforts include watersheds, soils, plants, and wildlife. In one study with Richard Teague, they were able to confirm that multi-paddock adaptive grazing improves water conservation and protects water quality. Philip also runs numerous education events at the west Texas ranches, along with Education Program Coordinator Melissa Bookhout at the north Texas ranches, providing practical firsthand knowledge to landowners, school children, and the public.
Rachel Vasquez recently talked to us about her work as Vice President of Grants. She was enthusiastic about spreading the work of land stewardship and water conservation through the Dixon grants program and a new and upcoming apprenticeship program. The apprenticeship program will help new ranch managers coming out of college gain real expertise in regenerative practices that heal our land. Dixon is about conserving water resources for generations to come, so it’s appropriate that they are training young people.
Learn more about the Dixon’s workhereand connect with our Regenerative Grazing Specialists at the Forum.
By Justin Morris, NCAT Regenerative Grazing Specialist
Have you ever wondered where the best place is to get information on the soils for your land? What if that information could tell you what kind of soil you have, how deep it is, how much water it could hold, or how much forage could be grown on each acre of your land in a year.Fortunately, there is such a source.It’s called the Web Soil Survey and you can access it from any laptop or desktop.
Launched in 2006 by the Natural Resources Conservation Service, the Web Soil Survey allows anyone to define any area they’re interested in within the United States and retrieve all sorts of soil-related information about that area. Here’s just a small sampling of what can be found:
Soil map unit symbol and name
Acres of a specific soil map unit within a defined area
Soil textures in the top five feet
Available water supply in inches for the top five feet
Land capability classification
Average annual precipitation
Frost-free period
Rangeland production during favorable, normal, and unfavorable years
Yields of irrigated and non-irrigated crops including pasture and hayland
And much, much more!
For those of you who are familiar with the hard copies of the soil survey, those are no longer available. Once you get used to using the Web Soil Survey interface, getting just the information you need without combing through a thick hard copy page by page becomes far easier to use and more accurate. And for those who still want a hard copy of something, not to worry. Everything in Web Soil Survey can be printed.
You can get started with Web Soil Survey. Once there, click on the big green “Start WSS” button. You’ll see a map of the lower 48 states with several tool buttons just above and to the left of the map. If you happen to be interested in an area in Alaska, Hawaii, or Puerto Rico, just click on the white hand tool to pan to those areas.
Alternatively, you can jump to any area by moving your cursor over to the menu bar at the far left and clicking on Address or State and County.
Once you’ve found the area you’re interested in, you can zoom in by using the cursor to select the magnifying lens with the plus symbol inside it. After clicking on the magnifying lens, move the cursor over the map and you’ll notice that the cursor turned into a plus symbol instead of an arrow. Click and drag over the area you want to see in greater detail. If you need to adjust the map east, west, north, or south to get everything in full view, click on the hand button to move the map image.
Now that you have the area you’re interested in and it’s filling up the entire interactive map view, click on one of two AOI toolbar buttons above the map. The AOI (Area of Interest) button on the left makes a rectangle, whereas the AOI button on the right makes a polygon of nearly any shape. Because field boundaries are rarely ever straight, I almost always select the polygon button. Click around the area you’re interested in and then double-click your mouse to finish the polygon.
If you’ve successfully defined an area of interest, the polygon you traced will have blue diagonal lines through it, as you see above, along with an acreage count for that area. If you weren’t successful on your first attempt to create a polygon, just try again and be sure that on your last corner you double-click your mouse to complete the polygon. If you want to adjust the polygon you just created, then click on Clear AOI on the upper left. Unfortunately, you can’t edit a single point once the polygon has been fully created. This is why you have to clear the area of interest if you want to make any modifications. You can then start over until you get it to look the way you want it to.
Now, let’s find out what soils are on this field. Scrolling up to the very top of the webpage, click on the Soil Map tab(see below).The blue diagonal lines on the map will disappear and be replaced by lines delineating soil boundaries. For this 125-acre field, there are just two soil map units – map unit 22, which is a Labenzo silt loam, and map unit 64, which is a Withers silty clay loam. Web Soil Survey shows the number of acres for each soil map unit and their percentage of the total. By the way, this is a great feature that the hard copy soil surveys of yesteryear could never tell you.
Clicking on the map unit name on the left of the screen reveals a new window with lots of great information about that soil (see below). Here we see the map unit description for the Labenzo silt loam, which includes information on where the soil is generally located, its composition, setting, typical profile soil texture, and properties.
After clicking on the X in the upper right corner to eliminate the map unit description window, go to the top of the screen and click on theSoil Data Explorer tab (see below).
Ifyou wanted to know what the potential alfalfa hay production is on this field, click on Vegetative Productivity (see above) under the Suitabilities and Limitations Ratings menu.This reveals a lot of different crops, some of which are not suitable for growing in this environment. Scroll down the list of different crops and click on Yields of Irrigated Crops (Component).Click on the dropdown menu and select Alfalfa Hay.Finally, click on View Rating.
Now we have a rating for alfalfa hay in tons per acre for the whole field by soil map unit. The numbers listed under the Rating column are only an estimate and should be used as a rough guide, not as numbers that are absolutely accurate.
If you want to save this information for the future or print it, click on Printable Version at the top right of the page (see below).
This is just one of nearly countless ways to find soil and crop productivity information for a specific piece of land. I’ve covered maybe one percent of what Web Soil Survey has to offer. If you have additional questions on how to use this tremendous tool, just contact your local USDA-NRCS office.
https://soilforwater.org/wp-content/uploads/2022/11/web-soil-survye.jpg373433Luz Ballesteros Gonzalez/wp-content/uploads/2021/10/soil-for-water-logo-101921.pngLuz Ballesteros Gonzalez2022-11-10 12:59:232022-11-10 12:59:23Using Web Soil Survey to Learn Your Land’s Potential
Soil for Water network member High Hope Farm is located in the “black prairie” country of western Clay County, Mississippi, and is owned and operated by Johnny and Deb Wray. Soil for Water Mississippi team leader Felicia Bell recently sat down with Mr. Wray to record an interview, discussing his regenerative journey and the improvements he’s seen in his farm’s soils.
In 2008, the Wrays decided to commit full-time to farming and moved permanently to the farm, after being inspired by Wendell Berry’s sustainable agriculture and local food systems philosophy. On their 38-acre farm, they raise regenerative grass-fed beef and lamb with two goals — providing safe, healthy beef and lamb to local consumers and sharing their regenerative agriculture journey with younger generations, hoping someone will follow in their footsteps. They use no steroids, growth hormones, antibiotics, or other chemical products. Their “high hope” is “to have a place that offers hospitality to friends and strangers alike — a welcoming table of good, healthy natural food, and a spot where earth, animals, plants, and people live, work, and play together harmoniously.”
When the Wrays first began, they tested their soil and found it was deficient in nitrogen, phosphorus, and potassium (NPK) minerals. Going against conventional wisdom, they decided not to depend on chemical inputs to correct these problems but instead chose to follow intensive rotational adaptive grazing to improve their mineral cycle. These decisions have paid off with dramatic improvements in their soil health. After 14 years of regenerative-adaptive management, Johnny was happy to share that current soil tests show significant improvements in organic matter at almost 6% and no NPK deficiencies.
Additionally, research on the farm by Mississippi State University showed that roots were deeper, soil microbiology was increasing, and some native grasses were returning, so much so that Johnny developed a new problem — growing too much grass. However, after consulting with Dr. Allen Williams, Johnny decided to let the paddocks he couldn’t manage rest because in the end tall grasses have deep roots that play a significant role in water infiltration and soil health.
This increased soil health has made High Hope Farm more resilient to unpredictable weather changes. Johnny mentioned that he realized he is a “dirt farmer” because “as you improve your soil, you improve your grasses, and you improve your livestock.” He has noticed a decrease in water runoff and soil erosion. Keeping the ground covered year-round also keeps the soil’s temperature noticeably cooler during hot Mississippi summers. These are all indications of a healthy soil sponge that captures, holds, and uses water more efficiently. Johnny says that observing these improvements as a direct result of his management is “very encouraging,” and has made his operation profitable.
Johnny mentioned great resources that helped him in his journey, including Understanding Ag, ATTRA, Soil Health Academy, USDA-NRCS, Mississippi State University, and regenerative movement pioneers like Dr. Allen Williams. He also emphasized the importance of being part of local producer networks to learn from others. These experiences have shown him firsthand how diversity and ecosystem dynamics are a fundamental part of regenerative farming.
By Lee Rinehart, Sustainable Agriculture Specialist
“If you always leave grass behind, you never run out of grass.”
I was going to save this quote for the end of this article; when I heard it during our conversation, I knew it would nicely summarize Guille (Gil) Yearwood’s philosophy. Now, I think it’s better to start with this quote. It’s an observation he had, “one of those moments,” in his words, back in the 1980s when he began his transition from continuous grazing to a rotational system. “I’ll never forget that day years ago when I went back to a grazed paddock a week later and saw regrowth.” It was something he’d never seen before. “When you graze a pasture continuously, you have no idea how much grass you have because its continually disappearing.” After Guille switched to rotational grazing, his paddocks would look like a hayfield four weeks after grazing. This, in his words, “is totally different and totally better.”
Guille Yearwood has been ranching forever. He started during his teenage years—1975 to be exact—and has been raising cattle ever since. When he started, he had other businesses going as well as the cattle work—25 years in real estate for one—but Ellett Valley Beef Company has been his full-time job since 2008.
Ellett Valley Beef Company encompasses seven locations around Blacksburg, Virginia, mostly on leased property, on which he grazes seven groups of South Poll beef cattle—a total herd of around 350 animals. Back when he first got the rotational grazing bug, by paying attention to Virginia Tech’s rotational grazing research, Guille divided his pastures into eight or 10 paddocks and began grazing stockers through the rotation. This is when he had his “aha” moment. He saw his forage yield increase immediately, and though the gains per head were not what he was used to, he noticed a higher herd weight gain because he could easily increase his stocking rate. Guille realized this new system could be taken up a notch, and now has 80 paddocks spread across all his pastures.
Cows grazing fescue – Oct. 2021
Guille would travel up to 90 miles a day checking and moving cattle before he reduced the number of leases a few years ago from 13 locations. Now, they’re all closer to home, significantly reducing the time to check and move cattle. Now, he and a part-time hired hand can check and move cattle more efficiently. He relies on grass alone and follows adaptive management techniques with frequent moves, mostly daily, and recovery periods of seventy to ninety days to allow for full plant recovery before the next time cattle see the paddock. Guille considers his system to be truly regenerative. In fact, he started regenerative grazing long before term came about, and he’s glad it did “because it’s a good term.” It accurately describes his way of doing business. His regenerative practices include highly diverse pastures, grazing for animal impact and nutrient cycling, and long recovery periods for plant rest and accumulation of high amounts of organic matter to the soil.
Ranch Profitability
“To be profitable, I need to graze all year, if possible,” Guille noted. His goal is to produce excellent grassfed beef and be profitable, and to accomplish that, his focus is on grazing as many cattle as he can through the winter. Some time back he began thinking about return on investment and started looking at the farm this way, realizing he needed to run this like his other businesses. He did an economic analysis and a budget and figured out that he couldn’t afford fertilizer or hay equipment. “I saw that [buying fertilizer and making hay] would not make a profit, so I got rid of them.” Instead, Guille buys hay to cover the 40-65 days during the year when he needs it. For the remainder of the year, the cattle graze fresh and stockpiled pasture. In fact, the interest he received from selling his hay equipment covered his hays costs, and he’s never looked back.
Guille’s pastures have been fertilizer-free since 2000. Prior to transitioning off of fertilizer, he had broadcast clover for several years, as he was particularly concerned about nitrogen fertility. But the second year after stopping nitrogen applications, he fertilized a fescue pasture in August, a common practice for preparing fescue for winter stockpile. However, after comparing days of grazing data between this and the prior year when no fertilizer was used, he realized he lost money with the fertilizer application. The days of grazing were the same for both years. This was the end of Guille’s use of purchased fertilizer. The diversity of his pastures, which included legumes and grasses, coupled with his adaptive management, provided the nutrient cycling and carbon sources he needed to be sustainable without it. All the while, he was ratcheting up his grazing techniques, trampling residue, and feeding hay on land that needed the nutrients. It seems that when he decided to go fertilizer-free, he had already been taking care of the soil for years, so he was ready.
Educational Philosophy
Guille’s college work includes an English degree from Virginia Tech and a master’s in English from Rice University. It is easy to tell from reading the blog entries on his website that his liberal arts education sharpened his critical thinking skills and gave him a foundation well suited for the complexities of agriculture. Since then, he has been inspired by Joel Salatin, especially his book Salad Bar Beef, which he says had a big impact on his philosophy. Other luminaries that inspired him include Andre Voisin, the “first true scientist that addressed rotational grazing,” Newman Turner, Jim Gerrish, and Allen Williams, who “has it figured out and is backed up with real science.” He learned about brix levels in forages from Williams, and though skeptical at first, he has seen a tremendous difference by moving cattle to new paddocks in the afternoon when brix levels are highest. Guille has learned so much and, with a natural drive and desire to help beginning and transitioning farmers, has much to share from his experience.
“The big challenges a new farmer needs to overcome are the tactile, physical problems. These are harder for people to pick up than we realize. For instance, a polywire reel is a foreign object to a beginner, but for me, it is an ordinary tool like a screwdriver.” Guille helps beginners by simply taking them out and involving them in moving cattle, checking cows, or moving polywire, and showing them how to shut off the power, tie polywire, or set posts. Newcomers are fascinated by the complexities of grazing tools and procedures, and he has come to understand how new this is to some people, so he trains people from this tactile perspective. Also, new farmers don’t know cattle and it’s a long learning process. His advice is to read all the books you can at night and during day go to the stockyard. Seriously, the stockyard. When a cow comes into the pen, evaluate her breed, condition, and weight, and especially listen to the people talking around you and pay attention to what they are observing.
“Some things we are just going to battle,” he said. For instance, weeds in fence lines are a major struggle for Guille. He has miles of electric fence and keeping them maintained is labor-intensive. He can spray a lot of fenceline in a short amount of time but would rather not use herbicides, and some lessors don’t want him to spray pesticides. “Weed eating would occupy me all summer, and then there’s the yellow jackets!” It’s an ongoing struggle, and he makes it clear he doesn’t have all the answers. “On this ranch you’ll see a lot of mistakes,” he said, but he has learned more in the past four years about grazing than in the 10 years preceding it. “Don’t panic… just try it” is the best advice he can give. “Don’t be afraid to set the field up and try it; if it doesn’t work, adjust and move on.”
Fine Tuning and Adaptation
Pasture with johnsongrass, fescue, clover, and stickweed (Verbesina occidentalis).
Guille doesn’t farm his land. Rather, he follows the truly regenerative practice of grazing what is available with one-day grazing periods and 70- to 90-day recovery periods. Plant communities change seasonally and yearly as different (adaptive) grazing practices are employed on the land. His pastures are diverse and include johnsongrass, which many graziers have tried to eliminate but he sees as complementary to his grazing system. Johnsongrass has usually been found in bottom land but now it’s moving on to upper lands, places he has never seen this hardy perennial grass before. It works out well in his grazing system because by the time he gets around to a paddock with johnsongrass, it’s fairly mature so it has no prussic acid problems. Also, there is enough diversity in the pastures and grazing them before the frost works well in his rotation.
Guille’s adaptive management hits a high note when it comes to finishing steers on grass. When trying to finish a group of steers (get ready, this is brilliant), he mimics continuous grazing (which, though hard on the pasture is good for optimizing individual animal gain) to allow the animals to exhibit more grazing selectivity. He keeps the rotation going at about the same grazing and recovery periods but gives the feeder steers bigger paddocks. “I’ve measured these results. On excellent pastures with medium-frame cattle, one group gained 4.2 pounds over six weeks and another group gained 4.6 pounds.” If a normal paddock size is a half-acre, he gives the finishers an acre and a half for the same period, giving them the ability to be more selective in their grazing.
Guille Yearwood currently serves as Farmer Advisor for the Virginia Soil for Water Project and is working with the Virginia Association for Biological Farming to plan a field day on his ranch in the spring of 2023, where participants can see up close the practices that he has been refining for the past 50 years. “This is the best job in the world,” Guille noted at the end of our last talk. His passion for the land and grass-based agriculture is palpable, as you’ll see if you make it to the spring field day. And, oh yes: Guille is an excellent writer, with a witty humor and deep love and knowledge of his subject, as you can see from the blogs posted on his website.
We use cookies. We want to make our website more user-friendly and continuously improve it. If you continue to use the website, you agree to the use of cookies.
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
Google Analytics Cookies
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
Other external services
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
Other cookies
The following cookies are also needed - You can choose if you want to allow them:
Privacy Policy
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.